Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Commun ; 15(1): 3321, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637578

RESUMO

Trait-based frameworks are promising tools to understand the functional consequences of community shifts in response to environmental change. The applicability of these tools to soil microbes is limited by a lack of functional trait data and a focus on categorical traits. To address this gap for an important group of soil microorganisms, we identify trade-offs underlying a fungal economics spectrum based on a large trait collection in 28 saprobic fungal isolates, derived from a common grassland soil and grown in culture plates. In this dataset, ecologically relevant trait variation is best captured by a three-dimensional fungal economics space. The primary explanatory axis represents a dense-fast continuum, resembling dominant life-history trade-offs in other taxa. A second significant axis reflects mycelial flexibility, and a third one carbon acquisition traits. All three axes correlate with traits involved in soil carbon cycling. Since stress tolerance and fundamental niche gradients are primarily related to the dense-fast continuum, traits of the 2nd (carbon-use efficiency) and especially the 3rd (decomposition) orthogonal axes are independent of tested environmental stressors. These findings suggest a fungal economics space which can now be tested at broader scales.


Assuntos
Micélio , Solo , Fungos , Carbono , Microbiologia do Solo , Ecossistema
3.
J Exp Bot ; 75(3): 760-771, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37891011

RESUMO

Biological nitrogen fixation (BNF) provides a globally important input of nitrogen (N); its quantification is critical but technically challenging. Leaf reflectance spectroscopy offers a more rapid approach than traditional techniques to measure plant N concentration ([N]) and isotopes (δ15N). Here we present a novel method for rapidly and inexpensively quantifying BNF using optical spectroscopy. We measured plant [N], δ15N, and the amount of N derived from atmospheric fixation (Ndfa) following the standard traditional methodology using isotope ratio mass spectrometry (IRMS) from tissues grown under controlled conditions and taken from field experiments. Using the same tissues, we predicted the same three parameters using optical spectroscopy. By comparing the optical spectroscopy-derived results with traditional measurements (i.e. IRMS), the amount of Ndfa predicted by optical spectroscopy was highly comparable to IRMS-based quantification, with R2 being 0.90 (slope=0.90) and 0.94 (slope=1.02) (root mean square error for predicting legume δ15N was 0.38 and 0.43) for legumes grown in glasshouse and field, respectively. This novel application of optical spectroscopy facilitates BNF studies because it is rapid, scalable, low cost, and complementary to existing technologies. Moreover, the proposed method successfully captures the dynamic response of BNF to climate changes such as warming and drought.


Assuntos
Fabaceae , Fixação de Nitrogênio , Isótopos de Nitrogênio/análise , Nitrogênio , Plantas , Análise Espectral
5.
Sci Diabetes Self Manag Care ; 49(4): 267-280, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37332238

RESUMO

PURPOSE: The purpose of the study was to describe, compare, and examine associations at baseline of reproductive health awareness, knowledge, health beliefs, communication and behaviors related to gestational diabetes (GDM) and GDM risk reduction in a vulnerable population of both American Indian/Alaska Native (AIAN) adolescent girls and their mothers. METHODS: Descriptive/comparative/correlational analyses examined multitribal baseline data on 149 mother-daughter (M-D) dyads (N = 298; daughter age = 12-24 years) enrolled in a longitudinal study to adapt and evaluate a culturally relevant diabetes preconception counseling (PC) program (Stopping-GDM). The associations between GDM risk reduction awareness, knowledge, health beliefs, and behaviors (eg, daughters' eating, physical activity, reproductive-health [RH] choices/planning, M-D communication, daughters' discussions on PC) were examined. Data collected online from 5 national sites. RESULTS: Many M-D lacked awareness/knowledge of GDM and risk reduction. Both M-D were unaware of the girl's risk for GDM. Mothers' knowledge and beliefs on GDM prevention/RH were significantly higher than daughters. Younger daughters had greater self-efficacy healthy living. Overall sample reported low to moderate scores for both M-D communication and daughters' GDM and RH risk-reduction behaviors. CONCLUSIONS: Knowledge, communication, and behaviors to prevent GDM were low in AIAN M-D, especially daughters. More than daughters, mothers perceive greater risk of GDM for daughters. Early culturally responsive dyadic PC programs could help decrease risk of developing GDM. Implications for M-D communication is compelling.


Assuntos
Indígena Americano ou Nativo do Alasca , Diabetes Gestacional , Relações Mãe-Filho , Saúde Reprodutiva , Adolescente , Adulto , Criança , Feminino , Humanos , Gravidez , Adulto Jovem , Indígena Americano ou Nativo do Alasca/psicologia , Indígena Americano ou Nativo do Alasca/estatística & dados numéricos , Comunicação , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/etnologia , Diabetes Gestacional/prevenção & controle , Diabetes Gestacional/psicologia , Conhecimentos, Atitudes e Prática em Saúde/etnologia , Estudos Longitudinais , Relações Mãe-Filho/etnologia , Relações Mãe-Filho/psicologia , Mães/psicologia , Mães/estatística & dados numéricos , Núcleo Familiar/etnologia , Núcleo Familiar/psicologia , Saúde Reprodutiva/etnologia , Saúde Reprodutiva/estatística & dados numéricos , Conscientização
6.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37330626

RESUMO

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Assuntos
Micorrizas , Simbiose , Animais , Humanos , Ecossistema , Fungos , Insetos , Plantas , Esporos Fúngicos
7.
Ecol Lett ; 26(7): 1108-1118, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37078433

RESUMO

Genomic traits reflect the evolutionary processes that have led to ecological variation among extant organisms, including variation in how they acquire and use resources. Soil fungi have diverse nutritional strategies and exhibit extensive variation in fitness along resource gradients. We tested for trade-offs in genomic traits with mycelial nutritional traits and hypothesize that such trade-offs differ among fungal guilds as they reflect contrasting resource exploitation and habitat preferences. We found species with large genomes exhibited nutrient-poor mycelium and low GC content. These patterns were observed across fungal guilds but with varying explanatory power. We then matched trait data to fungal species observed in 463 Australian grassland, woodland and forest soil samples. Fungi with large genomes and lower GC content dominated in nutrient-poor soils, associated with shifts in guild composition and with species turnover within guilds. These findings highlight fundamental mechanisms that underpin successful ecological strategies for soil fungi.


Assuntos
Evolução Biológica , Micorrizas , Austrália , Fertilidade , Genoma Fúngico , Solo , Microbiologia do Solo , Fungos/genética , Ecossistema
8.
Microorganisms ; 11(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37110258

RESUMO

Land plants have an ancient and intimate relationship with microorganisms, which influences the composition of natural ecosystems and the performance of crops. Plants shape the microbiome around their roots by releasing organic nutrients into the soil. Hydroponic horticulture aims to protect crops from damaging soil-borne pathogens by replacing soil with an artificial growing medium, such as rockwool, an inert material made from molten rock spun into fibres. Microorganisms are generally considered a problem to be managed, to keep the glasshouse clean, but the hydroponic root microbiome assembles soon after planting and flourishes with the crop. Hence, microbe-plant interactions play out in an artificial environment that is quite unlike the soil in which they evolved. Plants in a near-ideal environment have little dependency on microbial partners, but our growing appreciation of the role of microbial communities is revealing opportunities to advance practices, especially in agriculture and human health. Hydroponic systems are especially well-suited to active management of the root microbiome because they allow complete control over the root zone environment; however, they receive much less attention than other host-microbiome interactions. Novel techniques for hydroponic horticulture can be identified by extending our understanding of the microbial ecology of this unique environment.

9.
Plant Soil ; 483(1-2): 47-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36211803

RESUMO

Background and aims: Field surveys across known populations of the Endangered Persoonia hirsuta (Proteaceae) in 2019 suggested the soil environment may be associated with dieback in this species. To explore how characteristics of the soil environment (e.g., pathogens, nutrients, soil microbes) relate to dieback, a soil bioassay (Experiment 1) was conducted using field soils from two dieback effected P. hirsuta populations. Additionally, a nitrogen addition experiment (Experiment 2) was conducted to explore how the addition of soil nitrogen impacts dieback. Methods: The field soils were baited for pathogens, and soil physiochemical and microbial community characteristics were assessed and related to dieback among plants in the field and nursery-grown plants inoculated with the same field soils. Roots from inoculated plants were harvested to confirm the presence of soil pathogens and root-associated endophytes. Using these isolates, a dual culture antagonism assay was performed to examine competition among these microbes and identify candidate pathogens or pathogen antagonists. Results: Dieback among plants in the field and Experiment 1 was associated with soil physiochemical properties (nitrogen and potassium), and soil microbes were identified as significant indicators of healthy and dieback-affected plants. Plants in Experiment 2 exhibited greater dieback when treated with elevated nitrogen. Additionally, post-harvest culturing identified fungi and other soil pathogens, some of which exhibited antagonistic behavior. Conclusion: This study identified candidate fungi and soil physiochemical properties associated with observed dieback and dieback resistance in an Endangered shrub and provides groundwork for further exploring what drives dieback and how it can be managed to promote the conservation of wild populations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05724-7.

10.
Ecology ; 104(3): e3941, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36469035

RESUMO

Elucidating mechanisms underlying community assembly and biodiversity patterns is central to ecology and evolution. Genome size (GS) has long been hypothesized to potentially affect species' capacity to tolerate environmental stress and might therefore help drive community assembly. However, its role in driving ß-diversity (i.e., spatial variability in species composition) remains unclear. We measured GS for 161 plant species and community composition across 52 sites spanning a 3200-km transect in the temperate grasslands of China. By correlating the turnover of species composition with environmental dissimilarity, we found that resource filtering (i.e., environmental dissimilarity that includes precipitation, and soil nitrogen and phosphorus concentrations) affected ß-diversity patterns of large-GS species more than small-GS species. By contrast, geographical distance explained more variation of ß-diversity for small-GS than for large-GS species. In a 10-year experiment manipulating levels of water, nitrogen, and phosphorus, adding resources increased plant biomass in species with large GS, suggesting that large-GS species are more sensitive to the changes in resource availability. These findings highlight the role of GS in driving community assembly and predicting species responses to global change.


Assuntos
Biodiversidade , Pradaria , Plantas , Solo , Nitrogênio , Fósforo
11.
Mol Ecol ; 32(1): 229-243, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779067

RESUMO

Symbiotic fungi mediate important energy and nutrient transfers in terrestrial ecosystems. Environmental change can lead to shifts in communities of symbiotic fungi, but the consequences of these shifts for nutrient dynamics among symbiotic partners are poorly understood. Here, we assessed variation in carbon (C), nitrogen (N) and phosphorus (P) in tissues of arbuscular mycorrhizal (AM) fungi and a host plant (Medicago sativa) in response to experimental warming and drought. We linked compositional shifts in AM fungal communities in roots and soil to variation in hyphal chemistry by using high-throughput DNA sequencing and joint species distribution modelling. Compared to plants, AM hyphae was 43% lower in (C) and 24% lower in (N) but more than nine times higher in (P), with significantly lower C:N, C:P and N:P ratios. Warming and drought resulted in increases in (P) and reduced C:P and N:P ratios in all tissues, indicating fungal P accumulation was exacerbated by climate-associated stress. Warming and drought modified the composition of AM fungal communities, and many of the AM fungal genera that were linked to shifts in mycelial chemistry were also negatively impacted by climate variation. Our study offers a unified framework to link climate change, fungal community composition, and community-level functional traits. Thus, our study provides insight into how environmental change can alter ecosystem functions via the promotion or reduction of fungal taxa with different stoichiometric characteristics and responses.


Assuntos
Micobioma , Micorrizas , Ecossistema , Micobioma/genética , Secas , Raízes de Plantas/microbiologia , Solo/química , Plantas/microbiologia , Microbiologia do Solo , Fungos/genética
12.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137034

RESUMO

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Assuntos
Florestas , Aquecimento Global , Isópteros , Madeira , Animais , Ciclo do Carbono , Temperatura , Clima Tropical , Madeira/microbiologia
13.
Front Plant Sci ; 13: 836968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321443

RESUMO

Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C3 grasses, C4 grasses and legumes) planted in monoculture. Winter/spring drought resulted in productivity declines of 45% on average and up to 74% for the most affected species (Digitaria eriantha) during the 6-month treatment period, with eight of the nine species exhibiting significant yield reductions. Despite considerable variation in species' sensitivity to drought, C4 grasses were more strongly affected by this treatment than C3 grasses or legumes. Warming also had negative effects on cool-season productivity, associated at least partially with exceedance of optimum growth temperatures in spring and indirect effects on soil water content. The combination of winter/spring drought and year-round warming resulted in the greatest yield reductions. We identified responses that were either additive (Festuca), or less-than-additive (Medicago), where warming reduced the magnitude of drought effects. Results from this study highlight the sensitivity of diverse pasture species to increases in winter and spring drought severity similar to those predicted for this region, and that anticipated benefits of cool-season warming are unlikely to be realized. Overall, the substantial negative impacts on productivity suggest that future, warmer, drier climates will result in shortfalls in cool-season forage availability, with profound implications for the livestock industry and natural grazer communities.

14.
New Phytol ; 231(3): 1183-1194, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33982802

RESUMO

Latitudinal gradients provide opportunities to better understand soil fungal community assembly and its relationship with vegetation, climate, soil and ecosystem function. Understanding the mechanisms underlying community assembly is essential for predicting compositional responses to changing environments. We quantified the relative importance of stochastic and deterministic processes in structuring soil fungal communities using patterns of community dissimilarity observed within and between 12 natural forests and related these to environmental variation within and among sites. The results revealed that whole fungal communities and communities of arbuscular and ectomycorrhizal fungi consistently exhibited divergent patterns but with less divergence for ectomycorrhizal fungi at most sites. Within those forests, no clear relationships were observed between the degree of divergence within fungal and plant communities. When comparing communities at larger spatial scales, among the 12 forests, we observed distinct separation in all three fungal groups among tropical, subtropical and temperate climatic zones. Soil fungal ß-diversity patterns between forests were also greater when comparing forests exhibiting high environmental heterogeneity. Taken together, although large-scale community turnover could be attributed to specific environmental drivers, the differences among fungal communities in soils within forests was high even at local scales.


Assuntos
Ecossistema , Micobioma , Biodiversidade , Florestas , Fungos , Solo , Microbiologia do Solo , Árvores
15.
Sci Rep ; 11(1): 5988, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727657

RESUMO

A low loss metamaterial unit cell is presented with an integrated GaAs air-bridged Schottky diode to produce a dynamically tunable reflective phase shifter that is capable of up to 250° phase shift with an experimentally measured average loss of 6.2 dB at V-band. The air-bridged Schottky diode provides a tuneable capacitance in the range between 30 and 50 fF under an applied reverse voltage bias. This can be used to alter the resonant frequency and phase response of a split patch unit cell of a periodic metasurface. The air-bridged diode die, which is flip-chip soldered to the patch, has ultra-low parasitic capacitance and resistance. Simulated and measured results are presented which verify the potential for the attainment of diode switching speeds with acceptable losses at mmWave frequencies. Furthermore the study shows that this diode-based unit cell can be integrated into metamaterial components, which have potential applications in future mmWave antenna beam-steering, intelligent reflecting surfaces for 6G communications, reflect-arrays, transmit-arrays or holographic antennas.

16.
Methods Mol Biol ; 2232: 113-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33161543

RESUMO

Assessment of endophytic and saprotrophic microbial communities from wood-extracted DNA presents challenges due to the presence of surface microbes that contaminate samples and plant compounds that act as inhibiting agents. Here, we describe a method for decontaminating, sampling, and processing wood at various stages of decay for high-throughput extraction and purification of DNA.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA/isolamento & purificação , Fungos/genética , Madeira/genética , DNA/genética , Fungos/classificação , Madeira/microbiologia
17.
Front Plant Sci ; 11: 593198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193551

RESUMO

Cool season grasses associate asymptomatically with foliar Epichloë endophytic fungi in a symbiosis where Epichloë spp. protects the plant from a number of biotic and abiotic stresses. Furthermore, many grass species can accumulate large quantities of silicon (Si), which also alleviates a similar range of stresses. While Epichloë endophytes may improve uptake of minerals and nutrients, their impact on Si is largely unknown. Likewise, the effect of Si availability on Epichloë colonization remains untested. To assess the bidirectional relationship, we grew tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne) hydroponically with or without Si. Grasses were associated with five different Epichloë endophyte strains [tall fescue: AR584 or wild type (WT); perennial ryegrass: AR37, AR1, or WT] or as Epichloë-free controls. Reciprocally beneficial effects were observed for tall fescue associations. Specifically, Epichloë presence increased Si concentration in the foliage of tall fescue by at least 31%, regardless of endophyte strain. In perennial ryegrass, an increase in foliar Si was observed only for plants associated with the AR37. Epichloë promotion of Si was (i) independent of responses in plant growth, and (ii) positively correlated with endophyte colonization, which lends support to an endophyte effect independent of their impacts on root growth. Moreover, Epichloë colonization in tall fescue increased by more than 60% in the presence of silicon; however, this was not observed in perennial ryegrass. The reciprocal benefits of Epichloë-endophytes and foliar Si accumulation reported here, especially for tall fescue, might further increase grass tolerance to stress.

18.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
19.
New Phytol ; 227(6): 1610-1614, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32147825

RESUMO

A recent study by Sugiura and coworkers reported the non-symbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology.


Assuntos
Glomeromycota , Micorrizas , Ecossistema , Fungos , Miristatos , Ácido Mirístico , Raízes de Plantas , Simbiose
20.
Biol Rev Camb Philos Soc ; 95(2): 409-433, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31763752

RESUMO

Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.


Assuntos
Fungos/fisiologia , Plantas/microbiologia , Animais , Bases de Dados Factuais , Ecossistema , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA